Package index
-
ecpe_data
ecpe_qmatrix
- Examination for the Certificate of Proficiency in English (ECPE)
-
mdm_data
mdm_qmatrix
- MacReady & Dayton (1977) Multiplication Data
-
measrprior()
prior()
prior_()
prior_string()
- Prior definitions for measr models
-
is_measrprior()
- Checks if argument is a
measrprior
object
-
default_dcm_priors()
- Default priors for diagnostic classification models
-
get_parameters()
- Get a list of possible parameters
-
measr_dcm()
- Fit Bayesian diagnostic classification models
-
measrfit-class
- Class
measrfit
of models fitted with the measr package
-
measrfit()
- Create a
measrfit
object
-
as_measrfit()
- Coerce objects to a
measrfit
-
is_measrfit()
- Check if argument is a
measrfit
object
-
reliability()
- Estimate the reliability of psychometric models
-
fit_m2(<measrdcm>)
- Estimate the M2 fit statistic for diagnostic classification models
-
fit_ppmc()
- Posterior predictive model checks for assessing model fit
-
loo_compare(<measrfit>)
- Relative model fit comparisons
-
loo(<measrfit>)
- Efficient approximate leave-one-out cross-validation (LOO)
-
waic(<measrfit>)
- Widely applicable information criterion (WAIC)
-
loglik_array()
- Extract the log-likelihood of an estimated model
Add evaluations to model objects
Add reliability, model fit, and model comparison information to an estimated model object.
-
add_criterion()
add_reliability()
add_fit()
add_respondent_estimates()
- Add model evaluation metrics model objects
-
measr_extract()
- Extract components of a
measrfit
object.
-
predict(<measrdcm>)
- Posterior draws of respondent proficiency
-
create_profiles()
- Generate mastery profiles