
Package index
-
ecpe_dataecpe_qmatrix - Examination for the Certificate of Proficiency in English
-
mdm_datamdm_qmatrix - MacReady & Dayton (1977) multiplication data
-
measrprior()prior()prior_()prior_string() - Prior definitions for measr models
-
is_measrprior() - Checks if argument is a
measrpriorobject
-
default_dcm_priors() - Default priors for diagnostic classification models
-
get_parameters() - Get a list of possible parameters
-
measr_dcm() - Fit Bayesian diagnostic classification models
-
measrfit-class - Class
measrfitof models fitted with the measr package
-
measrfit() - Create a
measrfitobject
-
as_measrfit() - Coerce objects to a
measrfit
-
is_measrfit() - Check if argument is a
measrfitobject
-
reliability() - Estimate the reliability of psychometric models
-
cdi() - Item, attribute, and test-level discrimination indices
-
fit_m2(<measrdcm>) - Estimate the M2 fit statistic for diagnostic classification models
-
fit_ppmc() - Posterior predictive model checks for assessing model fit
-
loo_compare(<measrfit>) - Relative model fit comparisons
-
loo(<measrfit>) - Efficient approximate leave-one-out cross-validation (LOO)
-
waic(<measrfit>) - Widely applicable information criterion (WAIC)
-
loglik_array() - Extract the log-likelihood of an estimated model
Add evaluations to model objects
Add reliability, model fit, and model comparison information to an estimated model object.
-
add_criterion()add_reliability()add_fit()add_respondent_estimates() - Add model evaluation metrics model objects
-
measr_extract() - Extract components of a
measrfitobject
-
predict(<measrdcm>) - Posterior draws of respondent proficiency
-
create_profiles() - Generate mastery profiles